INDIAN SCHOOL MUSCAT HALF YEARLY EXAMINATION SEPTEMBER 2019

SET C

CLASS X

Marking Scheme - SUBJECT[CHEMISTRY][THEORY]

Q.NO.	Answers	Marks
		(with split up)
1.	PHY- MCQ	
2.	PHY- MCQ	
3.	PHY- MCQ	
4.	PHY- MCQ (BASED ON PRACTICAL)	
5.	C) Green color of salt fades and a gas with the smell of	1M
	burning sulfur is evolved.	
6.	b) Metals are malleable and ductile.	1M
7.	b) HCl	1M
8.	d) B and D	1M
9.	BIO- MCQ	
10.	BIO- MCQ	
11.	BIO- VSA (BASED ON PRACTICAL)	
12.	DIO VICA (DACED ON DDACTICAL)	
12.	BIO- VSA (BASED ON PRACTICAL)	
13.	BIO- VSA	
14.	BIO- ASSERTION/REASONING TYPE	
15.	PHY- VSA (BASED ON PRACTICAL)	
16.	PHY- VSA	
17.	PHY- ASSERTION/REASONING TYPE	
18.	A white precipitate is formed due to the formation of BaSO ₄	½ + ½ = 1M
19.	Substance oxidized – CO , Substance Reduced - Fe ₂ O ₃	½ + ½ =1M
20.	Due to evolution of CO₂ gas.	1M
21.	PHY	
	OR	
22.	PHY	
23.	PHY	
	OR	
24.	(A) Alkai, Eg. NaOH or Name	$\frac{1}{2} + \frac{1}{2} = 1M$
	(B) Bee sting contains Methanoic acid.	1/ . 1/ 484
	Baking Soda being basic in nature, neutralizes acid	½ + ½ = 1M
	and gives relief.	
	(C) Strong – H_2SO_4 , HNO_3 (Any one from each) Weak – CH_3COOH , H_2CO_3	$\frac{1}{2} + \frac{1}{2} = 1M$
	OR	, , , , , , , , , , , , ,
	(A) Soil is acidic	½ M
	(B) i) A is CuSO ₄ .5H ₂ O or (Hydrated copper suphate)	
	B is water of crystallization.	1/4x4= 1M
	C is CuSO ₄ or Anhydrous copper sulphate	
	Dis water	
	ii) Any example of a hydrated salt	½ M
	(C) Plaster of Paris absorbs moisture and changes to	484
	gypsum, a hard mass.	1M

25.	i) Reddish-copper, greyish-Silverii) Corrosioniii) Green-Copper carbonate or CuCO₃	$\frac{1}{1} + \frac{1}{2} = 1M$ $\frac{1}{1} + \frac{1}{2} = 1M$ $\frac{1}{2} + \frac{1}{2} = 1M$
	Black- Silversulphide Or AgS	
26.	 (A) Alis reducing agent. Alis more reactive, because it displaces Mn from MnO₂. (b) Because it undergoes photochemical reaction in the presence of sunlight. OR	1M ½ + ½ = 1M 1M
	 (A) i) Endothermic ii) Exothermic (B) i) Cu + 2AgNO₃ → Cu(NO₃)₂ + 2Ag Displacement Reaction ii) 3H₂ + N₂ → 2NH₃ Combination reaction 	½ + ½ = 1M ½ x 4 = 2M
27.	BIO OR	
28.	BIO	
29.	BIO	
30.	BIO	
31.	PHY OR	
32.	PHY	
33.	 (A) i) By heating alone the metal oxide ii) Electrolytic Reduction/ Electrolysis of its molten ore. iii) By using suitable reducing agents like carbon (coke) or CO or by using highly reactive metals like sodium, aluminium as reducing agents. 	3x1= 3M
	(B) Formation of Na ₂ O by transfer of electrons.	1M
	(C) One difference	1M
	OR	
	(A) Any two differences with chemical equations.	1 + 1 = 2M
	(B) Electrolytic Refining.	1, 4 2
	Pure copper is used as cathode.	½ x 4 = 2M
	Impure copper is used as anode. Copper sulfate as electrolyte.	
	(C) Correct definition with one example.	1M
34.	(A) Three balanced chemical equations.	3 x 1= 3M
"	(B) Solution A has max. concentration of H+ ions.	
	A is acidic, while B and C are Basic in nature	½ x 4 = 2M
35.	BIO	
	OR	
36.	BIO	